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This lecture will focus on some features of a universe that is described by the
Friedmann equations. We will introduce the concept of dark energy (cosmological
constant) as well as the so-called critical density. We will also look at a model that
combines energy contributions from multiple sources. We will discuss current best
estimates for the total energy budget of the universe.

This lecture should be supplemented by Liddle: 6-9

1 The cosmological constant

In the early 20th century—even in the presence of Hubble’s observations—Einstein
and the majority of astronomy and physics communities were against the concept of
an expanding universe.2 To combat this, Einstein famously implemented a cosmo-
logical constant. With this additional term, the 1st Friedmann equation becomes(

ȧ

a

)2

=
8πG

3
(ρm + ρr)−

k

a2
+

Λ

3
. (1)

In a universe that accommodates matter, radiation, and a cosmological constant,
the acceleration equation becomes

ä

a
= −4πG

3

∑
i∈[m,r,Λ]

(ρi + 3pi) = −4πG

3

∑
i∈[m,r,Λ]

ρi(1 + 3wi), (2)

where we assume that there’s an equation of state that allows one to write

pi = wiρi. (3)

1http://jon.fysik.su.se
2There must be dozens of books discussing this period in the development of cosmology. One book that I

particularly liked describes the role of Geogre Lemaitre in this story [1].
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Note that m, r, and Λ, correspond to matter, radiation, and a cosmological constant,
respectively.

Note. For most purposes and in most scientific discussion, dark matter and
ordinary baryonic matter are treated separately. However, when it comes to
describing the equation of state of these two constituents, they are treated
equally. Both dark matter and ordinary matter are treated as a pressureless
component (w = 0). This is consistent with a picture where dark mat-
ter particles correspond to unidentified non-relativistic particles (cold dark
matter).

Einstein invoked the cosmological constant to balance the contributions of energy
density, ρ, curvature, k, and the cosmological constant, Λ, so that we would get

H(t) = 0. (4)

This turns out to be quite difficult in the presence of the two Friedmann equations,
since any solution that gives H(t) = 0 is unstable to perturbations.

It is instructive to look at the acceleration equation in the presence of a cosmological
constant. It becomes

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (5)

If a positive cosmological constant term dominates the first term, it will induce a
positive value for ä. In other words, a relatively large and positive cosmological
constant will lead to accelerated expansion.

The modern interpretation is that Λ represents vacuum energy; the idea that empty
space has an intrinsic energy density. Figure 1 shows the qualitative difference
between a classical vacuum and one that is full of pseudo-particles that are popping
in and out of existence.

When attempting to calculate the expected value for the energy density of vacuum,
high-energy physicists (or particle physicists) find that the expected value is in the
range of 60-120 orders of magnitude greater than what is suggested by current
cosmological limits on magnitude of the cosmological constant. This is known as
the cosmological constant problem or the vacuum catastrophe.
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Figure 1: Vacuum fluctuations in ”empty space” compared to classical empty space. Particles are
popping in and out of existence leading to non-zero average energy of empty space.

1.1 Equation of state for cosmological constant

Let’s define

ρΛ ≡
Λ

8πG
(constant). (6)

This gives (
ȧ

a

)2

=
8πG

3
(ρm + ρr + ρΛ)− k

a2
. (7)

The requirement that ρΛ is constant implies that ρ̇Λ = 0. We can now use the fluid
equation to derive the equation of state for dark energy.

ρ̇Λ + 3

(
ȧ

a

)
(ρΛ + pΛ) = 0

⇒ ρΛ + pΛ = 0. (8)

In other words ρΛ = −pΛ. Using our standard notation, p = wρ, we get w = −1.
If the energy density is positive we therefore must have negative pressure!

2 Critical density

Examining the 1st Friedmann equation, we see that there is a value for the total
energy density, ρ that forces k = 0. This density is

ρc ≡
3H2(t)

8πG
. (9)
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Evaluated at the current epoch t = t0, this number is

ρc(t0) =
3H2

0

8πG
= 1.88× 10−26 h2 kg

m3
. (10)

Note that mass of the proton is 1.67 × 10−27 kg. Assuming h = 0.7, the critical
density then corresponds to approximately 5-6 protons per cubic meter! This sounds
like a really small number. However, when we look at cosmological distances this
does not sound as strange.

Remembering that G = 6.67 × 10−11 m3 kg−1 s−2, M� = 1.99 × 1030 kg, and
1 Mpc = 3.09× 1022 m3 we get

ρc = 2.8h−1 × 1011m�/(h
−1 Mpc)3. (11)

Note that mass of the Milky Way is estimated at approximately 1 × 1012 m� and
the typical distance between galaxies is of order 1 Mpc.

It is standard to define the density parameter relative to the critical density

Ω(t) =
ρ(t)

ρc(t)
=
ρm(t) + ρr(t)

ρc(t)
= Ωm(t) + Ωr(t). (12)

We sometimes drop the time-dependence (leave it implicit). In this case, the 1st
Friedmann equation for a universe that includes both matter and radiation becomes

H2 =
8πG

3
ρcΩ−

k

a2
,

= H2Ω− k

a2
(13)

where Ω = Ωr + Ωm and we can rearrange to find

Ω− 1 =
k

a2H2
. (14)

Note that Ω = 1 is a special case since k is a constant. It implies that Ω = 1 at all
times. After defining

ΩΛ ≡
Λ

3H2(t)
, (15)

and

Ωk ≡ −
k

H2(t)a2(t)
, (16)

we can also rewrite the above equation to get

Ω + Ωk = 1. (17)
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If we’re including a cosmological constant, we would get

Ωr + Ωm + ΩΛ + Ωk = 1. (18)

In a flat universe (k = 0),
Ωr + Ωm + ΩΛ = 1. (19)

The time-evolution of different energy components is coupled.

3 Total energy budget

We can put all of this together to find that

k

a2H2
= Ωr + Ωm + ΩΛ − 1. (20)

The curvature of the universe depends on the fractional contribution of different
energy components. We find that:

• Open universe: k < 0 and Ωr + Ωm + ΩΛ < 1

• Flat universe: k = 0 and Ωr + Ωm + ΩΛ = 1

• Closed universe: k > 0 and Ωr + Ωm + ΩΛ > 1

We can define

Ωm,0 ≡ Ωm(t = t0), Ωr,0 ≡ Ωr(t = t0), ΩΛ,0 ≡ ΩΛ(t = t0), (21)

which allows us to write

H2(t) = H2
0

[
Ωm,0

(a0

a

)3

+ Ωr,0

(a0

a

)4

+ Ωk

(a0

a

)2

+ ΩΛ,0

]
. (22)

This is sometimes written in terms of redshift

H2(z) = H2
0

[
Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + Ωk(1 + z)2 + ΩΛ,0

]
. (23)

Current best estimates suggest that Ωm,0 ∼ 0.3, Ωr,0 ∼ 1× 10−5, Ωk ∼ 1× 10−3,
ΩΛ,0 ∼ 0.7. In other words, at the present epoch it would appear that matter and
dark energy dominate. Furthermore, recent observations from the Planck satellite
limit the curvature of the Universe to

Ωk = 0.001± 0.002. (24)

In other words, current best estimates suggest that the universe if flat.

Figure 2 shows a selection of time evolution histories of the scale factor for different
values of the total universe energy density.
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Figure 2: Scale factor as a function of time for different total energy densities. Figure adapted from
a similar figure found in Dr. Neil Trentham’s lecture notes.

4 Deceleration/acceleration parameter

We can Taylor expand the scale factor around t = t0.

a(t) = a(t0) + ȧ(t0)(t− t0) +
1

2
ä(t0)(t− t0)2 + . . . (25)

Dividing through:

a(t) = a(t0)

[
1 +

ȧ(t0)

a(t0)
(t− t0) +

1

2

ä(t0)

a(t0)
(t− t0)2 + . . .

]
≡ a(t0)

[
1 +H(t0)(t− t0)−

q0

2
H2

0(t− t0)2 + . . .
]
, (26)

where

q0 ≡
−ä(t0)

a(t0)H2
0

= −a(t0)ä(t0)

ȧ2(t0)
(27)

is the (dimensionless) deceleration parameter.

Separate energy components evolve differently with the scale factor and from the
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acceleration equation we find

ä

a
= −4πG

3

∑
i

ρi(1 + 3wi) (28)

⇒ q0 =
−ä(t0)

H2
0a(t0)

=
4πG

3H2
0

∑
i

ρi(1 + 3wi) (29)

Noting that 4πG/(3H2
0) is a constant we see that ”fluids” with a positive value for

w will decelerate the rate of expansion. Dark energy on the other hand, tends to
accelerate the rate of expansion.

5 Connection to exam

It can be useful to connect the lecture material to types of questions that might
possible pop up on an exam. Here’s a typical exam question:

Question: We assume that Type Ia variables are standard candles and therefore
that their luminosity is fixed, L = Lsn (see Figure 3). We observe a supernova
in a satellite galaxy of the Milky Way (our own galaxy) and thankfully we also
have observations of cepheid variables that help us determine the distance to this
supernova, R0. The flux from this supernova is F0. We now detect a supernova
in what appears to be a distant galaxy. The relative magnitude of this supernova
compared to close-by supernova is ∆m = +9. Assuming that the luminosity of
these two stellar remnants is the same. Derive an equation that describes the
distance to the far-away supernova in terms of R0 and z for a) a universe that is
static; b) in a universe that is expanding such that a(t0)/a(t) = 1 + z where a(t)
is the scale factor and z is the redshift.

Answer: a) From lecture 11, in a static universe we know that the apparent
magnitude can be written as

m0 = −2.5 log10

(
F0

Fref

)
+ const. (30)

is the magnitude of the nearby supernova. The magnitude of the distant supernova
is

m1 = −2.5 log10

(
F1

Fref

)
+ const. (31)

The relative magnitude of the distant supernova compared to the nearby one is
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Figure 3: Problem setup.

therefore

∆m = m1 −m0 = −2.5 log10

(
F1

F0

)
= 9.0 (32)

Using the relation between luminosity and flux, F ∝ R−2 we see that

m1 = −5 log10

(
Rref

R1

)
+ const. (33)

which allows us to write

∆m = log10

(
R0

R1

)
= −9/5 (34)

⇒ R1 = R0/10−9/5 (35)

⇒ R1 ≈ 63.1R0 (36)

b) In a universe that is expanding we will have to change the luminosity relation.
Instead of F = L/(4πR2) we now have

F =
L

4πR2(1 + z)2
. (37)

Plugging into Equation 33, and assuming that the redshift of the reference super-
nova is z ≈ 0.0, we get

m1 = −5 log10

(
R1(1 + z)

Rref

)
+ const. (38)

So
R1 = 10∆m/5R0/(1 + z). (39)
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Figure 4: The absolute magnitude (or distance modulus) as a function of redshift for a collection
of Type Ia observations. Unlike in the previous figure, we are now looking backwards in time as we
move to the right on the graph. Measurements appear consistent with a positive second derivative
in the slope which would indicate accelerated expansion.

In an expanding universe, we find that physical distance to the supernova is less
than we would assume from a static universe. The photons lose energy because of
redshift.

6 Recent observations of accelerated expansion

Let’s now connect the above question to today’s lecture notes.

Recent observations of Type Ia supernova suggest that the Universe is expanding.
This observation led to the awarding of a Nobel prize in 2011. In effect, the
supernova measurements show that the deceleration parameter is positive; that the
scale factor has a positive second time derivative.

Figure 4 shows a cartoon version of the type of Hubble diagrams that are used
to support this claim. Data for hundreds of Type Ia supernova, which we assume
are standard candles, have been gathered. These supernovae are found in galaxies
covering redshifts up to about z ≈ 1.5. The distance modulus, or the absolute
magnitude, is plotted as a function of redshift. Different cosmological models are
shown for comparison. These models are generated using numerical calculations
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that allow us to evolve the scale factor for different energy density scenarios. It
would appear that models with a positive 2nd derivative (acceleration) fit the date
points more accurately. In particular, models with Ωm ≈ 0.3 and ΩΛ ≈ 0.7.
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